Who's your daddy? Using genetics to count male turtles at Sandy Point NWR, St. Croix.

Kelly Stewart - The Ocean
Foundation and Marine Mammal and
Turtle Division, NOAA-SWFSC
La Jolla, CA, USA

WIDECAST AGM
3.5.2015
Maunabo
Puerto Rico

- 1. Genetic tagging (age to maturity, survival rates)
- 2. Multiple paternity (mating systems, demography)
- 3. Operational sex ratios (life tables, modeling, life history strategies)
- 4. Reproductive success (male contributions to populations, gene flow)

Expected benefits of genetic tagging

- 1. Genetic tagging (age to maturity, survival rates)
- 2. Multiple paternity (mating systems, demography)
- 3. Operational sex ratios (life tables, modeling, life history strategies)
- 4. Reproductive success (male contributions to populations, gene flow)

Microsatellites

nuclear DNA

- contained in all cells in the body, inherited from both parents
- i.e., a locus has 2 alleles (one from each parent)
- specific sequence of alleles at a # of loci = fingerprint

Locus	D1	14-5	LB141	LB142	LB145
PPQ311	235.239	216.224	180.194	234.238	145.149

Methods

- 12 females chosen from 122 nesters
- 3 or 4 clutches each (38 nests total)
- 1,019 hatchlings

Paternal Genotype Reconstruction

	D1		5.	5H7		5C8	
Maternal	219	259	224	232	288	288	
Hatchling ID							
96401	219	231	232	236	288	292	
96402	219	231	232	236	288	292	
96403	231	259	232	236	288	292	
96404	231	259	208	232	288	292	
96405	231	259	208	232	288	292	
96406	247	259	232	236	288	292	
96407	219	231	208	232	288	292	
96408	219	247	208	224	288	292	
96409	219	247	224	236	288	292	
96410	247	259	208	232	288	292	
Paternal	231	247	208	236	292	292	

- a. Sampling the mother is very important.
- b. Identify maternal alleles.
- c. Leftover alleles belong to the father.

Benefits of Multiple Paternity Studies

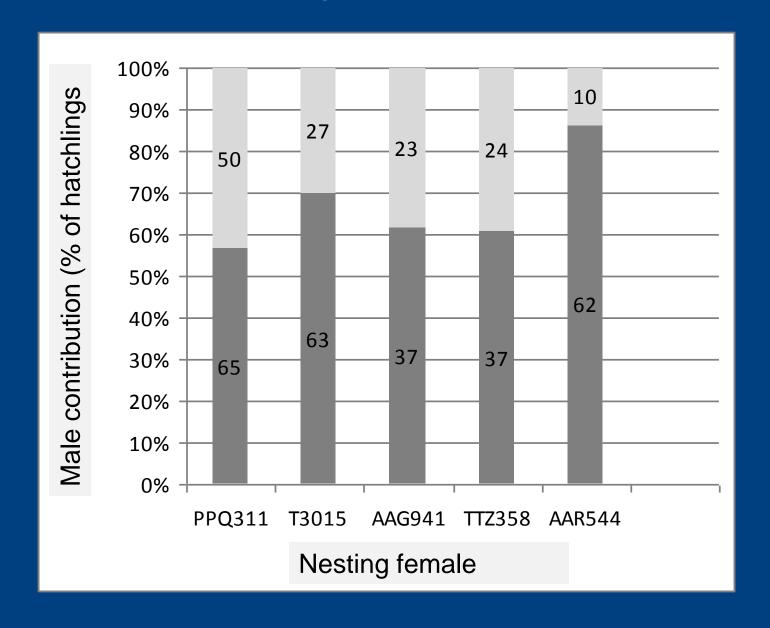
- 1. We found 17 DIFFERENT males were responsible for mating with 12 females
- Mating took place before the first nest was laid (both fathers represented in all clutches): 17 males and 12 females created 38 nests

Stewart and Dutton. 2011. Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (*Dermochelys coriacea*). Conservation Genetics.

- 1. Genetic tagging (age to maturity, survival rates)
- 2. Multiple paternity (mating systems, demography)
- 3. Operational sex ratios (life tables, modeling, life history strategies)
- 4. Reproductive success (male contributions to populations, gene flow)

Operational Sex Ratio

- 1. Evaluated 46 nesting females
- 2. Identified 47 unique males
- 3. Polyandry (multiple males)
- 4. Polygamy (multiple females)
- 5. Ratio = 1.01 males to 1 female



- 1. Genetic tagging (age to maturity, survival rates)
- 2. Multiple paternity (mating systems, demography)
- 3. Operational sex ratios (life tables, modeling, life history strategies)
- 4. Reproductive success (male contributions to populations, gene flow)

Contributions by multiple males

- 1. Hatchlings: Female-biased, often highly so
- 2. Juveniles: Generally female-biased
- 3. Adults: What is the operational sex ratio?

How many breeding males exist in the population? Are there enough?

- 1. Males may be as plentiful as females
- 2. Sex ratios on nesting beaches are important
- 3. Life history of turtles female bias not detrimental?

Applications

- Identification of thousands of turtles around the world
- Define important life history parameters (survival etc.)

- Account for male contributions to populations
- Explore population dynamics in more detail
- Improve recovery plans and goals for delisting

Photo: Jose Alejandro Alvarez/ Marine Photobank

Acknowledgements

Funding: NOAA-SWFSC,

TOF, Lenfest, STAR-

CalPoly, volunteer funds.

STX: Mike Evans, Claudia

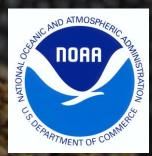
Lombard – USFWS;

WIMARCS; Geographic

Consulting.

Permits: USFWS #41526-

2014-002; DPNR STX-039-


2014

Field Work: Suzanne Roden, Robin LeRoux, Erin LaCasella, Amy Frey, Amy Lanci, Justin Perrault, Dana Tomlinson, Amy Semple, Mike McKay, Jeremy Smith, Vicki Pease, Shane Morales, **Violet Campbell, Claire** Gonazales, Elvis Liburd, Jamé Frey, Tim and Rachelle Kent, Lori Jackson, Shannon Haché, and Peter, Diana, Emma, Donna Dutton.

Supplies: Grant Long - Port Plastics,
San Diego, Cottages by the Sea (Paul
Benedict), and Armstrong's Ice Cream!

	D1	14-5	LB99	LB133	LB141	LB142	LB145
PPQ311	235 239	216 224	124 124	175 177	180 194	234 238	145 149
Male #1	243 259	206 206	122 124	167 179	168 188	228 228	129 149
Male #2	227 247	206 206	122 124	167 167	174 188	230 234	129 129
Hatchlings	227 235 (11)	206 216 (58)	122 124 (60)	167 175 (41)	168 180 (18)	228 234 (29)	129 145 (49)
	227 239 (13)	206 224 (60)	124 124 (57)	167 177 (43)	168 194 (20)	228 238 (34)	129 149 (39)
	235 243 (21)			175 179 (13)	174 180 (9)	230 234 (19)	145 149 (13)
	235 247 (13)			177 179 (16)	174 194 (8)	230 238 (10)	149 149 (12)
	235 259 (9)				180 188 (21)	234 234 (11)	
	239 243 (13)				188 194 (25)	234 238 (8)	
	239 247 (11) 239 259 (16)						
	235 263 (1)^	H Fyiden	ce of > 5	hatchling	a genotyr	es at > 1	locus H
	219 243 (1)*	LVIGOII	00 01 > 0	Tiatoriiii	genetyp	700 at 7 1	10003
	243 247 (1)*						
T3015	223 235	206 206	122 130	169 177	188 188	228 232	125 129
Male #1	247 259	204 206	122 132	167 177	188 188	228 230	125 149
Male #2	239 247	204 212	124 132	167 177	180 188	228 232	145 149
Hatchlings	223 239 (6)	204 206 (54)	122 122 (16)	167 169 (22)	180 188 (6)	228 228 (22)	125 125 (13)
_	223 247 (20)	206 206 (30)	122 124 (10)	167 177 (18)	188 188 (77)	228 230 (11)	125 129 (16)
	onclue	sion: 2	mala	s mate	d with	DDO3	1 1 45 (7) 49 (21)
	Olicius	SIUII. Z	. IIIaica	o mate	a with	rrws	45 (6)
_			4	5 4 4	10 1-1-	. l. l!	
mispla	oasea	on ger	Totype	s of 11	19 nato	eniings	
	ZZ1 Z+1 (1)		71				
	223 263 (1)^						
AAG941	243 251	206 206	124 124	167 177	168 168	228 232	129 145
Male #1	223 255	206 216	124 130	167 177	174 180	230 234	129 145
Male #2	223 255	206 214	122 124	157 177	174 180	228 228	129 145
Hatchlings	223 243 (16)	206 206 (29)	122 124 (12)	157 167 (3)	168 174 (26)	228 228 (15)	129 129 (21)
	223 251 (16)	206 214 (11)	124 124 (31)	157 177 (7)	168 180 (21)	228 230 (7)	129 145 (24)
	243 255 (15)	206 216 (15)	124 130 (18)	167 167 (13)		228 232 (10) 228 234 (7)	145 145 (17)
	251 255 (13) 223 235 (1)*			167 177 (26) 177 177 (13)		230 232 (9)	
	235 255 (1)*			1// 1// (13)		230 232 (9)	
	233 233 (1)					232 234 (9)	